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2 Periodic and aperiodic tilings
The mathematics of tiling is concerned 
with the problem of surfacing the plane 
without gaps or overlaps, using a finite set 
of tile shapes. This can be achieved with a 
single tile, and certain tile shapes, such as 
equilateral triangles, squares and regular 
hexagons, generate a periodic tiling, 
where a copy of the tiling on transparent 
paper can be translated to a new position 
that exactly overlays the original tiling. 
More complex shapes can also produce 
a periodic tiling, such as M.C. Escher’s 
tilings. 

However it is not possible to tile the plane 
with regular pentagons. A more general 
result is that periodic tiling is only possible 
for tiles with 2-fold, 3-fold, 4-fold or 
6-fold rotational symmetry1. For example 
the periodic tiling of irregular pentagons 
shown below2 has 4-fold rotational 
symmetry; or in other words, the tiling is 
reproduced by rotating the entire pattern 
about each centre of symmetry by 360°/4.

In the 1970s a set of two tiles was 
discovered that can tile the plane 
aperiodically, but never periodically. 
The Penrose tiling belongs to a special 
subclass of aperiodic tilings, known as a 
quasiperiodic tiling - it appears to be nearly 

1 Figure from Penrose, R., 1989, The Emperor’s New Mind, Oxford: 
Oxford University Press, p. 563.
2 Penrose [1989], p. 172.

periodic, and almost possesses the 5-fold 
symmetry which is forbidden in periodic 
tilings.

Current scientific interest in quasiperiodic 
tilings relate to their correspondence 
with the atomic structure of solids. Until 
the 1980s, all known atomic lattices 
possessed either 2-,3-, 4- or 6-fold 
rotational symmetry. Metal alloys, such 
as aluminium-manganese, have since 
been discovered which appear to break 
the accepted geometric rules of atomic 
packing, with an atomic structure with 
icosahedral symmetry that is the three-
dimensional analogue of the the two-
dimensional quasiperiodic tilings. Their 
quasicrystalline structure lies somewhere 
between the crystalline order of diamonds 
and the amorphous disorder of glass. 

There is a diverse variety of pentagonal 
and decagonal tiling patterns in medieval 
Islamic architecture. The properties of one 
such tiling from the Timurid-era Darb-
e-Imam Shrine (1453) in Esfahan, Iran,  
which is self-similar and quasiperiodic, 
was recently published in Science3. 
Although the authors are cautious in their 
conclusions, this finding suggests that 
quasiperiodic tilings were known to Persian 

3 Lu, P.J. & Steinhardt, P.J., 2007, Decagonal and Quasi-Crystalline Til-
ings in Medieval Islamic Architecture, Science, 315, 1106-1110.



3Tiling detail: Darb-e-Imam Shrine, 
Esfahan.

Girih tile outlines (dashed red lines)
on Topkapi scroll.

Set of five girih tiles.
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Configuration of tiles for large-scale tiling, 
corresponding to the blue ‘strapwork’ lines 
(after Lu & Steinhardt, 2007). 
Nodal points of this tiling (red dots) control 
the arch curvature.

Tiling detail: Darb-e-Imam 
Shrine, Esfahan.



5scientists and architects five hundred years 
prior to their western counterparts.

The girih tile theory4 postulates that 
Islamic tilings with pentagonal symmetry 
were constructed, both conceptually and 
in the building process, using a basis 
system of five template or girih tiles5. 
The girih tile framework alleviates the 
difficulties associated with traditional 
techniques of tile patterning using a ruler 
and compass, where slight errors in angle 
would propagate and be magnified over the 
thousand of lines that comprise the most 
elaborate tilings. 

The strongest evidence for the girih-tile 
method is in a Timurid-era scroll, now in 
the Topkapi Palace, Istanbul, where the 
outlines of the girih tiles are outlined in 
thin dotted red lines6. The outlines of the 
girih tiles are not evident in the final tiling – 
they are purely a design guide. Also evident 
in the Topkapi scroll are thick red lines, 
which correspond to the larger scale tiling 
which exploit the self-similarity properties 
of the girih tiles.

4 Lu & Steinhardt [2007].
5 girih means ‘knot’ in Farsi.
6 Scroll image from Lu & Steinhardt [2007].

The tiling is self-similar in the sense that 
each girih meta-tile can be decomposed 
into an arrangement of girih tiles at 
a smaller scale, corresponding to the 
individual tiling scale. The decomposition 
of another Darb-e-Imam tiling into the 
two scales of girih tiles is illustrated on 
page 4, where the large-scale (meta) tiling 
determines the positions of the blue lines 
connecting the yellow stars, and the small 
scale tiling corresponds to the scale of 
individual tiles. 

There is also a dual relationship between 
the tiling geometry (at the meta-tiling 
scale) and the structural geometry, where 
nodal points of the meta-scale girih tiles 
constrain the arch geometry in a similar 
manner to the control points of Bézier 
curves.

The girih tiles are directly related to 
Penrose tiles7. One of the Darb-e-Imam 
tilings has a one-to-one correspondence 
with a Penrose tiling8. The photos below 
display laser-cut acrylic girih tiles 
arranged in correspondence with a 
Penrose tiling.
7 Makovicky, E., 1992, in Fivefold Symmetry, Ed. I. Hargittai, Singapore: 
World Scientific, pp.67-86.	
8 Lu & Steinhardt [2007].
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The Friday Mosque in Esfahan displays 
numerous historical layers accreted over 
many centuries. The first mosque on the 
site of the Friday Mosque was constructed 
during the Abbasid period (8th century). 
Later Abassid mosque structures from the 
9th century corrected the misalignment of 
the Qibla wall of the original mosque. With 
further additions during the Seljuk period 
(11th – 12th century), the Friday Mosque 
evolved into a four-iwan structure, which 
was to become the standard model for 
subsequent Persian mosques1.

Each of the four iwans underwent 
numerous alterations in later periods. 
One example is the Safavid-era muqarnas 
system in the ceiling of the East Iwan (late 
16th century) which was the third such 
system in this location.The decoration of 
the West Iwan, which is one major focus 
in this project, is a mixture of Timurid-era 
(15th century) and Safavid-era (16th – early 
18th century) tiling. 

There is an embedded parametric 
relationship between the structure (the arc 
length of the arch) and the tiling decoration 
in the West Iwan of the Friday Mosque. 
Nine unit cells of the meta-tiling (the blue 
‘strapwork’ lines) extend along the length 
of the arch (pages 10-11). This particular 
tiling is periodic at the meta-tiling scale 
and is self-similar. The self-similarity is 
related to the self-similarity of Penrose 
tiles discussed later in this report. In this 
instance, the parametric relationship 
between tiling and building form is 
complementary; i.e., to accommodate a 
longer arch length without adding a whole 
additional unit cell, the meta-tiling scale 
could be increased slightly, such that the 
arch width increases proportionately.
1 Axonometric of Friday Mosque from Ganjnameh: Cyclopedia of Iranian 
Islamic Architecture, Volume 7 (Congregational Mosques), Rowzaneh 
Publications, Tehran.

East Iwan muqarnas - Safavid era (16th century)

Taj-ol-Molk dome chamber -Seljuk era (11th century)

Hypostyle prayer hall - Buyid era (10th century)

Friday Mosque, Esfahan
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Southeastern
entrance portico

West Iwan



8

Nodal ‘Bézier control points’ linking the tiling pattern 
to the arch geometry



9Other decoration in the interior of the West 
Iwan also exhibits two spatial tiling scales, 
as illustrated in the girih tiling on page 
8. These are similar to the Darb-e-Imam 
Shrine tilings discussed above.  Again, 
as for the Darb-e-Imam tilings, there 
is a direct link between decoration and 
structure, where nodal points of the tiling 
act like Bézier control points for the arch 
geometry, such that the tiling geometry is 
driving the structural geometry.

However, the meta-tiling arrangement is 
clearly not periodic, and is more complex 
than the Darb-e-Imam tilings (which 
are periodic at the meta-tiling scale). 
The interior iwan meta-tiling in the 
Friday Mosque follows a quasiperiodic 
configuration. There is a significant 
discrepancy, however, where an octagonal 
meta-tile is inserted into the pentagonal 
quasiperiodic geometry. This is not an 
accident, but rather a deliberate breaking 
of the quasiperiodic symmetry.  This 
compromise was made because a pure 
quasiperiodic meta-tiling does not fit 
seamlessly into the wedge-shaped frame 
at this scale. In fact, the pentagonal 
and octagonal geometries do not mesh 
consistently, and the octagonal meta-tile is 
an irregular (morphed) element.

This signals a departure from the purity 
of the Darb-e-Imam tilings, which display 
a rigid adherence to the mathematical 
geometry. This discrepancy illustrates that 
the designers allowed an interplay between 
the design of the building structure and 
decoration, rather than a rigid adherence 
to the  mathematical framework of the 
tiling system. While the tiling geometry 
often determined the structural geometry, 
in situations where inconsistencies arose, 
the structural geometry could force a 
reconfiguration of the tiling geometry.     

The fact that the same meta-tiling pattern 
is used in the tiling underneath the arch 
of the West Iwan of the Friday Mosque and 
in the Darb-e-Imam tilings suggests that 
they are contemporaneous. While an exact 
date for the West Iwan tilings of the Friday 
Mosque is not known, one possibility is 
that they were constructed at the same 
time as the the South Iwan was rebuilt by 
Uzun Hasan in 1475-762. This conjecture is 
supported by similarities in style of several 
of the South and West Iwan tilings3.

The southeastern entrance portico 
decoration marks a departure from 
both periodic and quasiperiodic tilings. 
This tiling can be constructed from girih 
tiles (as illustrated on page 13), but they 
are not arranged in either a periodic or 
quasiperiodic arrangement. This presents 
a more freeform approach to tiling, which 
is adapted to accommodate the structural 
form. In addition, the arch curve does 
not appear to be constrained by the tiling 
geometry as for the West Iwan and Darb-
e-Imam tilings. This freeform approach is 
maintained in the colouring of individual 
tiles, where certain paths of connected 
pentagons are cyan-coloured. The choice 
of these paths is discretionary - they are 
constrained but not completely determined 
by the tiling geometry.

Again, an exact date for this tiling cannot 
be pinpointed, but an inscription4 in the 
south-eastern entrance corridor (1530) 
places this as an early Safavid-era 
structure.  If the tiling dates from the same 
era, then it marks a transition between the 
strict geometries of Timurid-era tilings 
and the more fluid forms of later Safavid 
masterpieces such as the dome of the 
Sheikh Lotfallah Mosque (1615). 

2 Golombek, L. & Wilber, D., 1988, The Timurid Architecture of Iran and 
Turan: Volume II Princeton: Princeton University Press, p.379.
3 In particular, the raised relief tilings.
4 Ganjnameh: Cyclopedia of Iranian Islamic Architecture, Volume 7 
(Congregational Mosques), Rowzaneh Publications, Tehran, p. 118.
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West Iwan, Friday Mosque, Esfahan.
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Tiling pattern on the south-
eastern entrance portico of 
the Friday Mosque, Esfahan.
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Configuration of girih tiles 
that generates the entrance 
portico tiling.



14 Two-dimensional Penrose tilings
A Penrose tiling can be generated by 
manually aligning Penrose tiles which obey 
specific matching rules. The downside of 
this method is that there is no guarantee 
that after positioning, say, one thousand 
tiles, that an impasse is reached and other 
permutations must be sought. There is 
also the possibility that the ‘error’ may 
have been made in positioning the first few 
tiles. Alternative algorithmic methods exist 
for generating Penrose tilings, including 
the deflation-rule, direct-projection, grid-
projection, and generalized-dual methods1. 
All of these methods can be generalized to 
higher dimensional quasiperiodic tilings 
– the three-dimensional Penrose tiling 
will be discussed later in this report. The 
principal benefit of the generalized dual 
method, described below, is that it can 
generate every possible Penrose tiling 
together with more general quasiperiodic 
tilings, whereas the other methods can 
only generate a subset of all possible 
Penrose tilings.

The first step in generating a two-
dimensional Penrose tiling via the 
generalized dual method is to set up a 
pentagrid - this can be thought of as the 
construction geometry. Each pentagrid 
consists of straight lines oriented normal 

1 Socolar & Steinhardt, 1986, Quasicrystals. II. Unit-cell configurations, 
Physical Review B, 34, 617-647.

to one of the five (pentagonal) star vectors:

	

for n = 0, 1, 2, 3, 4.

The grid shown to the right is a periodic 
pentagrid, where each grid spacing is 
constant. Each of the lines in each of the 
5 grids (labeled by n=0,1,2,3,4) is labeled 
by the index number k=0,1,2, … . Each 
intersection point between grid lines has a 
one-to-one correspondence with a Penrose 
tile. The method to generate each Penrose 
tile is:

(1) Each grid intersection is surrounded 
by four open regions (for example, in this 
diagram, the four regions surrounding the 
intersection between grid 0: k=3 and grid 2: 
k=9 are coloured in shades of brown).

(2) Each open region maps to a vertex 
of the Penrose tile, and the four open 
regions then define the four vertices of the 
Penrose tile. The mapping is made by the 
mathematical operation of taking the dual.  
This is best explained by example:
In grid 0, the lightest brown open region 
lies between k=2 and k=3. Therefore k0=2 
(the lower value). 
In grid 1, the open region lies between k=6 
and k=7 and k1=6. 
In grid 2, the open region lies between k=9 
and k=10 and k2=9. 
In grid 3, the open region lies between k=7 
and k=8 and k3=7. 
In grid 4, the open region lies between k=4 
and k=5 and k4=4. 
The dual then maps the open region to the 
tile vertex:

e0

e1

e2

e3

e4
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function (CoordinateSystem cs)

{

    for (int i = 0; i < 5; i++)

    {

        Point evec = new Point(this); 

        evec.ByCartesianCoordinates(cs,Cos(72*i), Sin(72*i), 0 );

    }   
}

Plane [][] function (Point origin, Point evec, int gridsize, double gridspacing, double gridphase)

{

Plane myplane = {};

Direction mydirection=new Direction();

for (int gridno = 0; gridno < 5; gridno++)

{

    myplane[gridno] ={};

    mydirection.ByOriginDirectionPoint(origin, evec[gridno]);

    for (int n = 0; n <= gridsize; n++)

    {

        myplane[gridno][n] = new Plane();

        myplane[gridno][n].ByDirectionAndDistanceFromOrigin(origin, mydirection, gridspacing*(n-gridsize/2+gridphase[gridno]));    

    }

}

return myplane;
}
{baseCS,plane0,origin,starvector,gridsize,1.0,{gridphase0,gridphase1,gridphase2,gridphase3,gridphase4}}

Point [][][][][] function (CoordinateSystem cs, Plane starplane, Point myorigin, Point evec, int gridsize, double gridspacing, double gridphase)

{

Direction dplanes = new Direction();

Point intpoint = new Point();

Polygon mypoly = {};

Point tvec = {};

int kvec = {};

int index;

double tvecX= 0;

double tvecY= 0;

double tvecZ= 0;

    for (int j = 0; j < 5; j++)

    {

    tvec[j] = {};

        for (int N = 0; N <= gridsize; N++)

        {

        tvec[j][N] = {};

            for (int k = 0; k < 5; k++)

            {

            tvec[j][N][k] = {};

                if (k>j)

                {

                    for (int M = 0; M <= gridsize; M++)

                    {

                    tvec[j][N][k][M] = {};

                     dplanes.AtPlanePlaneIntersection(starplane[j][N], starplane[k][M] );

                     intpoint.AtDirectionPlaneIntersection(dplanes, cs.XYPlane);

                        for (int l = 0; l < 5; l++)

                        {

                            if ((l!=j)&(l!=k))

                            {

                             kvec[l]=Floor((intpoint.X*evec[l].X+intpoint.Y*evec[l].Y+intpoint.Z*evec[l].Z)/gridspacing+gridsize/2 -gridphase[l]);   

                            } 

                        }

                        for (int jj = N; jj <= N+1; jj++)

                        {

                            for (int kk = M; kk <= M+1; kk++)

                            {

                             kvec[j] = jj-1;

                             kvec[k] = kk-1; 

                             tvecX=0;

                             tvecY=0;

                             tvecZ=0;

                                for (int p = 0; p < 5; p++)

                                {

                                 tvecX += kvec[p]*evec[p].X; 

                                 tvecY += kvec[p]*evec[p].Y;

                                 tvecZ += kvec[p]*evec[p].Z;

                                }

                             index = 2*jj + kk;

                             tvec[j][N][k][M][index] = new Point();

                             tvec[j][N][k][M][index].ByCartesianCoordinates(cs, tvecX, tvecY, tvecZ );

                            }   

                        }

                    }       

                }      

            }      

        }    

    } 

return tvec;
}

Polygon [][][][] function (CoordinateSystem cs, Point ppoint, int gridsize)

{

Polygon mypoly = {};

    for (int j = 0; j < 5; j++)

    {

    mypoly[j] = {};

        for (int N = 0; N <= gridsize; N++)

        {

        mypoly[j][N] = {};

            for (int k = 0; k < 5; k++)

            {

            mypoly[j][N][k] = {};

                if (k>j)

                {

                    for (int M = 0; M <= gridsize; M++)

                    {

                     mypoly[j][N][k][M] = new Polygon();

                     mypoly[j][N][k][M].ByVertices({ppoint[j][N][k][M][0],ppoint[j][N][k][M][2],ppoint[j][N][k][M][3],ppoint[j][N][k][M][1]});

                    }       

                }      

            }      

        }    

    } 

return mypoly;
}
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function (CoordinateSystem cs)

{

    for (int i = 0; i < 5; i++)

    {

        Point evec = new Point(this); 

        evec.ByCartesianCoordinates(cs,Cos(72*i), Sin(72*i), 0 );

    }   
}

Plane [][] function (Point origin, Point evec, int gridsize, double gridspacing, double gridphase)

{

Plane myplane = {};

Direction mydirection=new Direction();

for (int gridno = 0; gridno < 5; gridno++)

{

    myplane[gridno] ={};

    mydirection.ByOriginDirectionPoint(origin, evec[gridno]);

    for (int n = 0; n <= gridsize; n++)

    {

        myplane[gridno][n] = new Plane();

        myplane[gridno][n].ByDirectionAndDistanceFromOrigin(origin, mydirection, gridspacing*(n-gridsize/2+gridphase[gridno]));    

    }

}

return myplane;
}
{baseCS,plane0,origin,starvector,gridsize,1.0,{gridphase0,gridphase1,gridphase2,gridphase3,gridphase4}}

Point [][][][][] function (CoordinateSystem cs, Plane starplane, Point myorigin, Point evec, int gridsize, double gridspacing, double gridphase)

{

Direction dplanes = new Direction();

Point intpoint = new Point();

Polygon mypoly = {};

Point tvec = {};

int kvec = {};

int index;

double tvecX= 0;

double tvecY= 0;

double tvecZ= 0;

    for (int j = 0; j < 5; j++)

    {

    tvec[j] = {};

        for (int N = 0; N <= gridsize; N++)

        {

        tvec[j][N] = {};

            for (int k = 0; k < 5; k++)

            {

            tvec[j][N][k] = {};

                if (k>j)

                {

                    for (int M = 0; M <= gridsize; M++)

                    {

                    tvec[j][N][k][M] = {};

                     dplanes.AtPlanePlaneIntersection(starplane[j][N], starplane[k][M] );

                     intpoint.AtDirectionPlaneIntersection(dplanes, cs.XYPlane);

                        for (int l = 0; l < 5; l++)

                        {

                            if ((l!=j)&(l!=k))

                            {

                             kvec[l]=Floor((intpoint.X*evec[l].X+intpoint.Y*evec[l].Y+intpoint.Z*evec[l].Z)/gridspacing+gridsize/2 -gridphase[l]);   

                            } 

                        }

                        for (int jj = N; jj <= N+1; jj++)

                        {

                            for (int kk = M; kk <= M+1; kk++)

                            {

                             kvec[j] = jj-1;

                             kvec[k] = kk-1; 

                             tvecX=0;

                             tvecY=0;

                             tvecZ=0;

                                for (int p = 0; p < 5; p++)

                                {

                                 tvecX += kvec[p]*evec[p].X; 

                                 tvecY += kvec[p]*evec[p].Y;

                                 tvecZ += kvec[p]*evec[p].Z;

                                }

                             index = 2*jj + kk;

                             tvec[j][N][k][M][index] = new Point();

                             tvec[j][N][k][M][index].ByCartesianCoordinates(cs, tvecX, tvecY, tvecZ );

                            }   

                        }

                    }       

                }      

            }      

        }    

    } 

return tvec;
}

Polygon [][][][] function (CoordinateSystem cs, Point ppoint, int gridsize)

{

Polygon mypoly = {};

    for (int j = 0; j < 5; j++)

    {

    mypoly[j] = {};

        for (int N = 0; N <= gridsize; N++)

        {

        mypoly[j][N] = {};

            for (int k = 0; k < 5; k++)

            {

            mypoly[j][N][k] = {};

                if (k>j)

                {

                    for (int M = 0; M <= gridsize; M++)

                    {

                     mypoly[j][N][k][M] = new Polygon();

                     mypoly[j][N][k][M].ByVertices({ppoint[j][N][k][M][0],ppoint[j][N][k][M][2],ppoint[j][N][k][M][3],ppoint[j][N][k][M][1]});

                    }       

                }      

            }      

        }    

    } 

return mypoly;
}

(3) Repeat step 2 for all four open regions 
surrounding the intersection point to give the 
four vertices of the corresponding Penrose tile.

The blue Penrose tiles in this diagram show the 
four Penrose tiles generated by the dual method 
for four adjacent intersection points along the 
grid 2: k=5 line (dashed black line). In order, 
the intersecting lines are grid 3: k=4 (dark blue 
dashed line), grid 4: k=6, grid 0: k=8, and grid 1: 
k=8 (light blue). The four generated Penrose tiles 
are also adjacent because the common vertices 
correspond to the common open region adjoining 
neighbouring intersection points.

This algorithmic process can be automated - 
Generative Components was utilized here for 
this purpose. This diagram shows a Penrose 
tiling for grid index values kn   10. The extent 
of the pentagrid (red lines) is also displayed. 
As more grid lines are added to the pentagrid 
(with kn  10) the tiling expands. In the limit as kn 
approaches infinity, the Penrose tiling covers the 
entire plane, with infinite variation and with no 
gaps or overlaps.

Alternative Penrose tilings are generated by 
shifting the phase of each (periodic) grid. As 
each grid phase is varied the grid intersection 
points shift, and the duals map to new Penrose 
tile vertex positions. The constraint that 
distinguishes the subset of Penrose tilings from 
the larger set of quasiperiodic tilings is that the 
five grid phases must add up to zero. 

The quasiperiodic nature of the Penrose tiling 
can be revealed by making a copy of a particular 
Penrose tiling and translating it relative to of the 
original tiling (imagine that the tilings are drawn 
on acetate sheets and one sheet is moved across 
the other). The resulting Moiré pattern, where 
the two patterns interfere constructively and 
destructively, consists of bars aligned normal 
to the star vectors (and parallel to the pentagrid 
lines), but where the grid spacing consists of a 
sequence of long and short spacings. Each of 
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these binary sequences is quasiperiodic. The 
lighter regions in the Moiré pattern correspond 
to where the overlapping tilings are locally 
similar.

The rich complexity of the Penrose tiling can also 
be revealed by following the lead of the tilers of 
the southeastern entrance portico of the Friday 
Mosque in Esfahan, and tracing the connected 
path of one tile shape. The patterns overlaid 
on the Penrose tiling on page 19 are made by 
tracing the paths of connected ‘fat’ Penrose 
tiles. One of the properties which differentiate 
Penrose tilings from other quasiperiodic tilings 
is that these paths do not diverge - there is only 
one route to follow.  









22 There is a direct relationship between 
Penrose tiles and the Persian girih 
tiles, as illustrated below. Several of the 
Penrose tiles are bisected at the girih-
tile boundaries and naturally provide 
matching rules for connecting girih 
tiles1. The decagon girih tile is redundant 
in the Penrose conversion, and can be 
constructed from a combination of two 
other girih tiles, as shown.

The girih tiling pattern corresponding 
to a Penrose tiling is shown here. This 
demonstrates a contemporary technique 
to generate large-scale quasiperiodic 
girih tilings. The strapwork pattern 
corresponding to a portion of this girih 
tiling is shown on page 5.

1  Note that in the alternative ‘kites and darts’ formulation, the Penrose 
tile shapes fit exactly inside the girih-tile boundaries (see Lu & Stein-
hardt, 2007). 





24 Self-similarity transformations
Another remarkable property of Penrose 
(and girih) tiles is their intrinsic self-
similarity. Penrose tiles can be ‘deflated’ to 
smaller scales (or inflated to larger scales) 
via a recursive substitution operation. In 
the deflation operation, each Penrose tile 
is broken down into a cluster of Penrose 
tiles at a smaller scale, such that the entire 
Penrose tiling is deflated into a different 
Penrose tiling at the smaller scale. The 
deflation operation does not respect the 
boundaries of individual Penrose tiles, 
but it does respect half-tiles. This is also 
evident in the Persian quasiperiodic tilings 
discussed above, where half-tiles often line 
the outside boundary of the tiling. 

Deflated Penrose tilings can also be 
generated by an algorithmic process 
using the generalized dual method 
outlined above. However this cannot be 
achieved with periodic pentagrids for the 
construction geometry, as outlined in the 
previous section. Instead, quasiperiodic 
pentagrids must be used. One specific 

quasiperiodic pentagrid, the Fibonacci 
pentagrid, is used to generate Penrose 
tilings1, with star vectors:

 	

for grid number n = 0, 1, 2, 3, 4, and line 
positions given by

where N is the grid index number,  is the 
golden ratio, the floor function returns 
the closest integer less than the rational 
argument, and

This generates one specific Penrose 
tiling (the special case with a centre of 
symmetry). All other Penrose tilings 
can be generated by making a specific 
transformation of the αn and βns

2.

The deflated Penrose tiling is generated by 
making the transformation to α∗

n and β∗
n 

(where * denotes the deflated tiling), with

The deflation process can be repeated 
recursively to arbitrarily small scales. 
The diagram to the right shows a triple 
deflation from the blue Penrose tile to the 
black tiles, and a further triple deflation 
from the black to the red tiles. The shift in 
scale from the meta-tiling to the individual 
tile scale in the Timurid-period tilings 
discussed above corresponds to a triple 
deflation.

1 Socolar & Steinhardt, 1986, Quasicrystals. II. Unit-cell configurations, 
Physical Review B, 34, 617-.647.
2 See Socolar & Steinhardt (1986), eq. 19.
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The following pages illustrate a 
contemporary an urban-scale mashrabiah 
which exploits the self-similarity properties 
of Penrose tiles on a functional basis. 

On pages 26-27, aperformance-to-scale 
elevation denotes how various scales 

of the screen elements offer variable 
environmental responses.

The images on pages 28-29 shows this 
structure embedded and dispersed in an 
urban streetscape.
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Three dimensional quasiperiodic tilings can 
also be generated via the generalized dual 
method. For three-dimensional Penrose 
tilings the star vector is icosahedral, with:

                           

for  n = 0, 1, 2, 3, 4, and .

Three-dimensional quasiperiodic tiles 
generated from this icosahedral star vector 
are oblate and prolate rhombohedra, 
analogous to the fat and thin two-
dimensional Penrose tiles. It is necessary 
to generate a three-dimensional Penrose 
tiling from a quasiperiodic hexagrid1, 
whereas a two-dimensional Penrose 
tiling can be generated from periodic 
or quasiperiodic pentagrids. Periodic 
hexagrids will generate three-dimensional 

1 Socolar & Steinhardt (1986).	

Three-dimensional quasiperiodic tilings
quasiperiodic tilings, but not a three-
dimensional Penrose tiling, which is a 
specific subclass of all possible three-
dimensional quasiperiodic tilings. The 
grid lines in two dimensions generalize 
to grid planes in three dimensions (as 
shown in the figure below) and the point 
of intersection between two lines in the 
two-dimensional case becomes the point 
of intersection between three planes. The 
quasiperiodic spacing between planes 
(index number N) parallel to the star vector 

 satisfies the formula:

 .

For the special case of a Penrose tiling, 
 and     for all n.

Three dimensional quasiperiodic tilings 
can also be deflated, using the same 
formulas given on page 24. A quasiperiodic 
tiling spanning three scales is illustrated 
overleaf.

In a three-dimensional Penrose tiling, the 
tiles are always arranged in four clusters 
or unit cells. This is related to the highly 
singular nature of the quasiperiodic 
hexagrid, where more than three planes 
often meet at each intersection point. 
The smallest unit cell, the prolate 
rhomohedron, corresponds to the non-
singular intersections at points where 
three planes meet. The other clusters, 
the dodecahedron, the icosahedron, 
and the tricontahedron, correspond to 
four-fold, five-fold, and six-fold (where 
all six planes intersect at one point) 
singularities, respectively2. These four 
zonohedra are the constituent elements 
of a three-dimensional Penrose tiling. 
Each zonohedron can be decomposed into 
prolate and oblate rhombohedra by slightly 

2 Socolar & Steinhardt (1986).
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shifting each plane grid in the hexagrid, but 
by doing so the symmetry is broken. 

The Penrose unit cells must obey certain 
matching rules when assembled to form 

a three-dimensional Penrose tiling. Some 
assemblages obeying the matching rules 
are shown on the following page. 
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Three-dimensional Penrose tiles

Quasiperiodic tiling with two deflations
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Quasiperiodic Tilings
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Synopsis

There are a diverse variety of pentagonal and decagonal tiling patterns in medieval Islamic 
architecture. The remarkably similar properties of Timurid-period tilings and contemporary 
Penrose tilings suggests that quasiperiodic tilings were known to Persian mathematicians 
and architects five hundred years prior to their western counterparts. Quasiperiodic tilings 
display infinite variation and self-similarity, where similar patterns recur over multiple 
scales.

The first part of this report focuses on several tilings from the Friday Mosque in Esfahan, 
Iran, and confirms their compatibility with a recently posited theory that complex tilings with 
five-fold symmetry were constructed using various permutations of five template ‘girih’ tiles. 
The girih tile method alleviates the difficulties associated with traditional techniques of tile 
patterning using a ruler and compass, where slight errors in angle would propagate and be 
magnified over the thousands of lines that comprise the most elaborate tilings. The girih tile 
theory also naturally accounts for those tilings that exhibit two spatial tiling scales, where 
each large-scale girih tile can be neatly divided into a quasiperiodic arrangement of small-
scale girih tiles.

These techniques resonate with contemporary architectural thought regarding algorithmic 
form generation methods and parametric systems. The parametric nature of the Timurid-
period tilings is evident in the dual relationship between decoration and structure, where 
nodal points of the large-scale girih tiles constrain the arch geometry in a similar manner to 
the control points of spline curves.

Previously studied girih tilings exhibit either a periodic or quasiperiodic arrangement of girih 
tiles at the larger tiling scale.  In contrast, two tilings analysed in this report display a less 
rigid adherence to the mathematical geometry, and reveal the role of a designer’s discretion. 
One of these tilings, which appears to be a free-form arrangement of girih tiles, strengthens 
the girih tile theory because its simplicity makes alternative generation methods appear 
elaborately contrived. In the second example, the quasiperiodic symmetry is broken with the 
insertion of an irregular girih tile to optimise the compatibility between the building structure 
and decoration. Again, this interplay mirrors contemporary ideas on massaging the often 
messy synthesis between algorithmic and parametric form generation and real-world 
architecture.

The second part of this report explores the generative potential of quasiperiodic tilings in two 
and three dimensions in a contemporary architectural context, utilizing current mathematical 
knowledge of quasiperiodic tilings and digital techniques. Graphically intuitive algorithmic 
methods for generating Penrose tilings of arbitrary extent and their self-similar deflations 
are outlined, together with a technique to generate quasiperiodic girih tilings of arbitrary 
extent.  


