
Relational Geometries
Custom Fabrication
and Assembly of Digital
Architecture

Robert Beson
Byera Hadley Traveling Scholarship 2010

2

Acknowledgements

I would like to take this space to thank the people
and organisations that made the travel and research
possible. Firstly, I am grateful to the Byera Hadley
Travelling Scholarship and the New South Wales
Architects Registration Board. Without both of which,
none of this would have been possible. The same is
true of Fabian Scheurer and the office of Design to
Production, Switzerland. Extremely gracious with his time
and knowledge, Fabian enabled an invaluable learning
experience. I owe a debt of gratitude to Sandra Kajia-
O’Grady and Anthony Burke, who provided the support
of the University of Technology, Sydney. I would also
like thank Damien Butler, Sarah Benton, and Gabriele
Ulacco who provided their support and recommendations
throughout the project.

4

Contents

Acknowledgements� 2
Relational Geometries� 6
Gerode Project� 8
Kreisel Waldstatt� 14
Beniwood Pavilion� 22
Field Trips� 26
Blumer Lehmann� 28
ETH Fabrication Workshop� 30
Zentrum Paul Klee� 32
Mercedes Benz Museum� 34
EPFL Learning Center� 36
BMW Welt� 38
Munich Olympic Stadium� 40
Maxxi� 42
RhinoScript Python� 44

6

Relational Geometries

Custom Fabrication
and Assembly of Digital
Architecture

Digital design techniques are commonly taught in
schools of Architecture, and at UTS we are invested
in computer controlled fabrication equipment, such
as laser cutters, milling machines and rapid proto-
typers. However, while there are many architects
using digital tools, and fabricators using computer
controlled machinery, there remains a gap between
the designers of the projects and the fabricators who
build them. This research aims to fill that gap and will
provide architects with the expertise to better realise
complex architectural designs. For large scale, complex
projects our procurement methods are changing, and
although architects are experts at traditional methods
of construction, an inadequate knowledge of the digital
fabrication and assembly process prevents the delivery of
these projects.

With the use of digital design techniques, contemporary

architectural projects are increasing in size and complexity.
A number of current projects, on which I have worked,
both in the academy and the profession, are characterised
by an extreme number of prefabricated components
each slightly varied. Delivering complex architecture of
this sort requires a combination of specialist parametric
software as well as custom-built, scripted tools. One of the
best firms in the world at realising complex geometries is
Design to Production. Based in Zurich, Switzerland, they
have a strong history of working with architects around
the world to help them rationalise, fabricate and assemble
complex architectural projects.

Through an eight-week internship working with
Design to Production, the investigation researches and
develops techniques and planning processes for the
custom fabrication and assembly of complex architectural
projects. The focus is not to “illustrate architecture within

the computer, but to extract architecture again from the
computer in order to build artefacts, which cannot be
realised with conventional practice.”

The method for this project involved travelling to
Zurich to work with Design to Production for eight-weeks.
The internship was supplemented with excursions to a
number of their recently completed projects in Switzerland
and Germany including the EPFL Learning Center , the
Hungerburg Funicular Station , and the Mercedes Benz
Museum . While current publications on these buildings
are helpful, working directly with Design to Production
has enabled me to develop a toolset and production
methodology immediately applicable to the education and
production of architecture.

8

Gerode Project

The Gerode project is a
roof structure covering an
old Romanesque church
in the Swiss countryside.

It is to be support on eight columns at a height of 20m
from the ground. It is a research project in collaboration
with the Swiss timber company Blumer Lehmann. The
research focuses on innovative techniques for fabricating
and assembling doubly curved timber structures.

The project when finished will showcase the technical
ability and collaboration between Blumer Lehmann and
Design to Production.

My role consisted of designing a number of surface

options for the roof and deploying scripts which resolve
the surface into girders for construction. This is the first
step in moving from a definition surface to the construction
model.

The definition surface acts as the critical interface
between the design, engineering, and construction teams.
It is usually the object of most concern to the architect,
and that which is engineered. It is important that accurate
and well-modeled surfaces are used as primary and

secondary structural systems as well as facade are all
designed in relation to this single reference. Problems with
the reference or its coordination between consultants will
reverberate throughout the construction.

Reference surface and resulting girders

10

Strategies Accurately modeling the reference surface is of the
utmost importance. The reference surface must be
composed of a single NURBS surface, not a poly-surface.

As a NURBS surface is a defined mathematically,
it allows for accurate extraction of sub-elements such
as curves and points. In this case, we will be creating a
series of girder curves based on the surface. A facetted,
poly-surface would result in facetted curves, resulting in
facetted timber beams. We need to maintain the resolution

Surface curvature analysis

of our surfaces and curves as far as possible as we move
information downstream.

Further, its curvature must be continuous. Any slight
variations in the surface curvature will disrupt the creation
of the girders.

Keeping in mind the structural action and construction
needs, we must take care to orient the grid with the stems.
As the roof surface funnels down to the stems, it is easy
to introduce discontinuities between the attachment of the

girders and the stems.

12

Process A grid is defined for the structure. The grid will be used
later to project the girders onto a reference surface.

The intersections of the grid mark the centers for the
location of the stems.

The reference surface is modeled according to design
sensibility, the boundary of the roof, the grid, and the
stems. It is used, in combination with the girder axes, to
produce the girders.

The simplest way to create the girders on the surface is

Options for timber girder construction

first to define them as a grid on the ground plane, which is
then projected onto the reference surface. The projected
curves will be used to create the girder volumes.

At this stage, a number of options are tested according
to construction, structural and aesthetic constraints. With
the chosen timber construction process, each timber
girder can only intersect with one other girder at a time.

The project paused at this stage while evaluating
the structure against the two chosen designs (shown).

The next steps in the process of taking the design
to production would be to define the joint locations,
segmentisation of the girders, and export of segments for
CNC fabrication.

14

Kreisel Waldstatt

The Kreisel Waldstatt
is a public-art project
at a round-about in
Switzerland.

In terms of the overall research agenda, the round-
about project picks up the fabrication process where we
left it with the last project. The doubly-curved beams are
defined and need to be organised for a digital fabrication
process.

It consists of a series of doubly-curved timber beams
each approximately 12m long. The structure is to be built
from standard timber blanks measuring 12m x 250mm x
250mm.

Structure organised into optimum blank sizes for milling

Custom curved blanks could also be used, however,
they cost approximately ten times the price of the standard
timber. The beams will have to be segmented to fit within
the standard blanks, which will then be machined back
into the doubly-curved segment on a 5-axis timber milling
machine.

The goal for this project was to find the minimum blank
that could accommodate each segment individually,
while still fulfilling all of the fabrication, structural, and

construction constrains. to optimize the blanks for
minimum wastage and then prepare and export the
fabrication data.

Finished digital model constructed from segments to be milled

Segment sitting within unoptimised blank Optimum blank based on minimum bounding box

16

Strategies Our strategy is to achieve the longest blank possible
with the minimum waste, while working within the
constraints of manufacturing, structural integrity, and
assembly.

Starting with some predefined solid geometry, the goal
is to optimize the data before exporting for fabrication.
To accomplish this, I developed an iterative, brute-force,
algorithm that starts with the maximum potential length
and checks it against the constraining parameters - in

LENGTH

W
ID
TH

Iterative reduction of segment length based on length, width, depth and
fiiber direction

this case, the width and depth of the blank, and the fiber
direction of the timber. If the constraints are not satisfied,
then then the algorithm steps back along the timber beam
and tries a shorter blank size. It repeats the process until
a solution is reached for the particular segment. It then
starts again from the end of the current segment, working
its way along the beam. It does this for every beam until
all the segments are accounted for. This will produce
large, efficient blanks for straighter portions of the beams

where curvature is low and shorter blanks where curvature
is high.

The most constraining factor here is the fiber direction.
We have to minimise the difference in fiber direction to
preserve structural action of the beam. The difference
between the fiber direction of the blank and the finished
segment cannot be greater than 5 degrees.

LENGTH

W
ID
TH

>5º

>5º

Fiber diection of segment versus blank

18

Process Firstly, global parameters are defined:
1.	 Labeling, layer names, colours and file naming

conventions;
2.	 the maximum blank length, width, and height;
3.	 the minimum blank length, width, and height;
4.	 the excess length, width and height of the blank

needed for milling;
5.	 the maximum permitted deviation of the segment’s

fiber direction from the blank’s z-axis.

Original modeled volumes

Secondly, the center-lines and edge-curves are
extracted from the Rhino beam geometry. All subsequent
operation will always be conducted on the beam
centerline. The centerline and associated edge-curves are
put on appropriate layers, labeled and grouped.

Extraction of edge-curves and centerline

20

Segmentize Curves: The body of the script uses a
iterative, brute-force method to test all possible bounding
boxes for the current segment. The script finds the
minimum bounding box for the current segment and tests
it against the constraining parameters. For example, it
tests whether the current blank’s width is less than the
maximum width of 250mm and greater than the minimum
width of 100mm. If, this or any other of the constraining
conditions are not met, then it reduces the length of the

segment and tries again. It repeats the process, always
with the minimum bounding box, until a valid option is
found. Once found, it uses the minimum bounding box to
create the blank volume.

Segmentisation of timber beam

Build Segment Volumes: this small script uses the
centerline and edgecurves to build the final volume for
each discretised segment of the beam.

The final script exports all the fabrication data to an
excel file.

Single segment with surrounding blank volume

22

The Beniwood Pavilion
is a temporary pavilion
designed and built for a
timber trade show.

Although a separate project, the Beniwood Pavillion
explores the final part of the design to production process
– exporting the information for fabrication.

From an initial sketch design (given), the brief consisted
of two parts: first, to build a parametric Grasshopper
model in Rhino for the client to experiment before finalising
the design; and second, to produce fabrication and
assembly data for the finalized design.

Beniwood Pavilion

Easy to design
In producing the parametric model for the client, the

goal was to incorporate all of the design drivers into the
simplest model. The model needed to have sufficient
control to allow experimenting with the design while being
easy for a non-specialist to manipulate.

Simple to fabricate
The machine used to fabricate the timber for the

pavilion was only available for one day in the coming
month. This necessitated a simple and quick fabrication
process. To facilitate this, a single timber profile was
chosen. The single profile can be fed into the saw
machine and cut to the programmed lengths.

Quick to install and remove.
A hanging mechanism was chosen to allow for rapid

installation and removal. A simple numbering system was

24

devised to assist assembly on site.
Assembly information also needs to be provided so

that the installer can quickly find the required piece, locate
where it is to be installed and orient it in the right position.
Many things can slow this down, one of the most
troublesome, but also easily preventable, is having too
much information present. One need the absolute minimal

Parametric Grasshopper model
From the client-supplied sketch model, a reference

surface was constructed using six curves. The curves
allow simple modification of the reference surface while
minimizing complexity.

The vertical timber members form a circular pattern
based on the growth rings of a tree. They are to hang
from beams cutting across the pavilion. In order to place
them, the intersections are found between the beam

curves and a series of offset circles.
A line is drawn between each intersection and its

projection on the reference surface.
Along this line, a profile is extruded, showing the

current design. When ready, this can “baked” out into
standard Rhino geometry for the fabrication and assembly
scripting.

Scripted Output
Once the design was finalised, the geometry was taken

from Grasshopper and the output was scripted: the timber
boards were labelled according to the beam and circle
intersection. The name and length of each board was
then exported to an excel spreadsheet for fabrication.

26

Field Trips

Switzerland is perfectly positioned for weekend visits to
most of Western Europe. There are a number of buildings
throughout Europe on which Design to Production have
collaborated. There are also innumerable architectural
projects in between. Part of the research during the two
months involved seeing as many recent buildings, which
relied on advanced fabrication and assembly, as possible.
Although the trip involved visits to six countries in Europe,
I shall focus on eight field trips that inform the construction

of complex architectural projects: Blumer Lehman timber
in Gossau, Switzerland; the ETH fabrication workshop,
Zentrum Paul Klee in Bern, Mercedes Benz Museum,
Stuttgardt, the EPFL Learning Centre in Lausanne;
Munich’s Olympic Park and BMW Welt; and the Maaxi in
Rome.

28

Blumer Lehmann

Located in Gossau, in north-east Switzerland, Blumer
Lehmann is a timber processor and fabricator. The factory
touches all aspects of timber production, including drying,
processing and 5-axis machining of complex timber
elements. They accomplish this through a relationship
with an engineering firm and Design to Production, built
up over a number of projects. Most importantly, they have
worked on Shigeru Ban’s Golf Club in South Korea and
the Kilden Kristiansand Facade in Norway.

Together, the trio have created an effective workflow
of knowledge sharing that allows them to complete the
most complex of architectural projects. In particular,
Blumer Lehmann and Design to Production work very
closely together from the beginning of the fabrication.
D2P has intimate knowledge of Blumer Lehmann’s tools
and manufacturing constraints, which enables them to
optimise their manufacturing processes.

30

ETH Fabrication Workshop

The Gramazio and Kohler chair at the ETH, Zurich,
“examine(s) the changes in architectural production
requirements that result from introducing digital
manufacturing techniques.” They are particularly
interested in the results of combining data and material
and the implications this has on architecture. “The
possibility of directly fabricating building components
described on the computer expands not only the
spectrum of possibilities for construction, but, by the
direct implementation of material and production logic into
the design process, it establishes a unique architectural
expression and a new aesthetic.” (http://www.dfab.arch.

ethz.ch/web/e/about/index.html)
In 2005, Gramazio and Kohler installed a flexible

construction facility based on a Kuka robot. The robot
travels on a seven meter-long linear axis and has a reach
of three meters – able to fabricate and position building
parts on a 1:1 scale.

Previously, their research focussed on using the robot
to very accurately position simple building elements, such
as bricks. They have recently shifted their focus to using
the robot to fabricate complex building elements that are
simple to assemble by hand.

32

Zentrum Paul Klee

The Zentrum Paul Klee is a museum of art in Bern,
Switzerland, dedicated to the work of Paul Klee. Designed
by Renzo Piano, it was constructed in 2004. The
building’s form is a series of waves based on concentric
circles. In order for the architect to test alternative
solutions, Design to Production developed a parametric
model of the steel structure. The model was used to
produce the 2-dimensional plans of the curved I-beams
for the steel contractor.

34

Mercedes Benz Museum

Finished in 2005, UN Studio’s Mercedes Benz museum
in Stuttgart is composed of two intertwining ramps that
spiral through the building. While they create a unique
spatial experience for the visitor, they are very difficult to
describe with traditional architectural drawings. Further,
the complex geometry of the smooth, fair-faced concrete
surfaces were beyond the scope of existing formwork
systems and manual planning methods.

Design to Production constructed a parametric model

of the whole building to coordinate all the subsequent
planning steps of the numerous trades involved. The
master geometry was used to generate thousands of
plans during the building process. They also developed
a method for producing doubly curved formwork from
planar boards. The formwork panels were all prefabricated
on a CNC router and bent to the desired shape in-situ
during construction.

36

EPFL Learning Center

SANAA’s Learning Center at the EPFL in Lausanne
is defined by smooth, doubly curved concrete slab
measuring 7,500 sqm. Design to Production automated
the planning process by using the slab surface to produce
the detailed plans for all 1,500 formwork tables as well
the machine data for the CNC-cutting of 10,000 individual
cleats.

38

BMW Welt

Designed by Coop Himmelb(l)au, the BMW Welt is
a multi-function exhibition and car-pick up center in
Munich. Constructed in 2007, the building relied on
advanced in geometric modelling as well as structural
and environmental analysis. Of particular interest is the
integration of building services within the structure.

40

Munich Olympic Stadium

The Munich Olympic Stadium was built for the 1972
Munich Olympics. Designed by architect Gunther
Behnisch and engineer Frei Otto, was at the time, and
remains a revolutionary structure. Although digital
processes were not used, the design and analysis
extensively used analogue models to compute structural
behaviour. Although four decades old, the analogue
computing models of Frei Otto remain a relevant research
topic.

42

Maxxi

Designed by Zaha Hadid and finished in 2009, the
Maxxi is a museum of 21st century arts in Rome. The
building is of interest, not so much for its digital planning
and fabrication, but for its precise realisation of complex
geometry.

44

RhinoScript Python

#===

1.0 INTRODUCTION

#===

1.1 Python overview

1.2 Rhino and Python

1.3 Resources and Documentation

1.4 External IDEs

1.5 Python Identifiers

1.6 Indentation

1.7 Multi-line statements

1.8 Comments

1.9 Assignment

1.10 Type Testing

#===

2.0 TYPES

#===

2.1 Numbers

2.2 Strings

2.3 Lists

2.4 Tuples

2.5 Dictionaries

2.6 Sets

2.7 Reference vs. Copies

#===

3.0 SYNTAX

#===

3.1 Statements

3.2 Printing: redirecting the output stream

3.3 If Test

3.4 While Loops

3.5 For Loops

#===

4.0 FUNCTIONS

#===

4.1 def Statement

4.2 Scope Rules

4.3 Global variable

4.4 Passing Arguments

4.5 Multiple Output

#===

5.0 MODULES

#===

5.1 Modules useful for Rhino

5.2 Package Imports

5.3 Private Data

5.4 __name__ and __main__

#===

6.0 CLASSES

#===

#===

7.0 EXAMPLES

#===

7.1 Project Setup

7.2 Project Parameters

7.3 Extracting EdgeCurves and CenterLine from existing geometry

7.4 Segmentizing curves according to manufacturing by iterative minimum-bounding box method

7.5 Reconstructing segment volumes

7.6 Storing data on objects

7.7 Exporting data to Excel

7.8 Project Documentation

7.9 Export geometry for manufacturing

46

#===

1.0 INTRODUCTION

#===

#--- 1.1 Python overview

‘’’

Python is a high-level, interpreted, interactive and object oriented-scripting language.

Python was developed by Guido van Rossum in the late eighties and early nineties at the

National Research Institute for Mathematics and Computer Science in the Netherlands.

‘’’

#-- # 1.2 Rhino and Python

‘’’

IronPython is a specific implementation of the python language that runs on top of .NET.

CPython is another common python implementation that people use that is written in C

while Jython is written in Java. I chose IronPython because of it’s incredible ability

to use all of the classes available in the .NET framework including all classes and functions

made available through RhinoCommon

Our python implementation includes a set of very similar functions that can be imported

and used in any python script for Rhino. This set of functions is known as the rhinoscript package.

Documentation on this package can be found at http://www.rhino3d.com/5/ironpython/index.html

Along with the RhinoScript style functions you will be able to use all of the classes in

the .NET Framework, including the classes available in RhinoCommon. As a matter of fact,

if you look at the source for the RhinoScript style functions, they are just python scripts

that use RhinoCommon. This allows you to do some pretty amazing things inside of a python script.

Many of the features that once could only be done in a .NET plug-in can now be done in a python

script.

To use python editor in Rhino, enter >> EditPythonScript

‘’’

#--- # 1.3 Resources and Documentation

‘’’

Rhino Python

http://python.rhino3d.com/

RhinoScript Functions in RhinoPython

http://www.rhino3d.com/5/ironpython/index.html

RhinoCommon SDK documentation

http://www.rhino3d.com/5/rhinocommon/index.html

IronPython Cookbook

http://www.ironpython.info/index.php/Contents

Python Website

http://www.python.org/

Enthought Python Distribution

http://www.enthought.com/ #Python + scientific, math, and graphing libraries

included

The Python Tutorial

http://docs.python.org/tutorial/

Python Docs

http://docs.python.org/

Python Tutorial Series

http://www.tutorialspoint.com/python/index.htm

‘’’

#-- # 1.4 Extenal IDEs

‘’’

Eclipse

http://www.eclipse.org/

PyDev

http://pydev.org/

Tutorial for getting PyDev + Eclipse + Rhino working

http://python.rhino3d.com/entries/12-Configuring-Pydev-for-Rhino.Python

‘’’

#-- 1.5 Python Identifiers

‘’’

No punctuation characters

Python is case-sensitve

_identifier >> private

__identifier >> strongly private

__identifer__ >> python-defined special name

‘’’

#--- 1.6 Indentation

‘’’

Blocks of code are defined by indentation, not brackets.

‘’’

#--- 1.7 Multi-line statements

‘’’

total = item_one + \

 item_two + \

 item_three

Statements within [], {}, () can drop lines

days = [‘Monday’, ‘Tuesday’, ‘Wednesday’,

 ‘Thursday’, ‘Friday’]

‘’’

48

#-- 1.8 Comments

‘’’

A single line comment begins with a #

A multi-line comment uses triple, single quotes

‘’’

#-- 1.9 Assignment

‘’’

Everything in Python is an object. Identifiers reference objects.

Pyhton always stores a reference to the object, never a copy of it unless you

specifically request it.

‘’’

#--- 1.10 Type Testing

‘’’

Python does not care about type - objects are polymorphic. The notion of type lives

with the object, not the variable. Therefore, type testing is not a good idea in Python

because it limits your codes flexibility to working on just one type.

‘’’

#===

2.0 TYPES

#===

‘’’

Python has 5 standard data types: Numbers, Strings, Tuples, Lists and Dictionaries

Every object is classified as immutable or not:

 Strings: immutable

 Numbers: immutable

 Tuples: immutable

 Lists: mutable

 Dictionaries: mutable

Other types include: sets and booleans.

‘’’

#--- # 2.1 Numbers

‘’’

Python supports four different number types:

- ints

- longs

- floats

- complex

‘’’

Mixed types are converted up

a = 10 # int

b = 3.1415 # float

c = a + b

print c # float

‘’’ On Variables

Variable are created when assigned, never ahead of time

Variables refer to objects

This means that you have to assign counters to zero before you can add them

and initialise lists to an empty list before appending them.

‘’’

#--- # 2.2 Strings

‘’’

Strings in Python are identified as a contiguous set of characters in between quotation marks.

‘’’

Assignment

Variable are created by assignment

aString = “I’m sorry, Dave.”

anotherString = “I’m afraid I can’t do that.”

Print statement

print aString

50

Print the length of a string

print len(aString)

Print a string concatenated with a non-string

print ‘The number of characters in the above string is:’ + str(len(aString))

Access the index of a string

print aString[0]

print aString[2]

Access from the end by negative values

print aString[-1]

print aString[-2]

Slice a string

print aString[4:9]

Slice from the beginning to a value

print aString[:9]

Slice from an value to the end

print aString[11:]

Slice with a step

print aString[0:(len(aString)):2]

print aString[::3]

print aString[::-1]

Make a top-level copy of the whole string

copyString = aString[:]

print copyString

Concatenate strings

print aString + ‘ ‘ + anotherString

Repetition on strings

print aString[:11] * 4 + ‘ ‘ + anotherString

String Formatting

‘’’

import rhinoscriptsyntax as rs

curves = rs.GetObjects(‘select’)

for i in range(len(curves)):

 start = rs.CurveStartPoint(curves[i])

 end = rs.CurveEndPoint(curves[i])

 #rs.AddTextDot(i, start) # Adds the number to each dot

 rs.AddTextDot(‘%04d’ %(i), start) # Integer/Decimal number, formatted with padding of 4

 rs.AddTextDot(‘%f’ %(i), end) # Float number

‘’’

#--- # 2.3 Lists

‘’’

Lists are positionally ordered collections of arbitrarily typed objects.

Accessed by offset.

Variable length, heterogenous and arbitrarily nestable.

They are mutable - unlike strings, they can be modified in-place.

They are similar to arrays in other languages.

A list contains items separated by commas and enclosed within square brackets [].

‘’’

aList = [3.14, ‘pi’, 314] # Can contain multiple data types

print ‘aList = ‘ + str(aList)

print ‘aList[1] = ‘ + str(aList[1]) # Accessed by offset

anotherList = aList[1:] # Slicing returns a new list

print anotherList

thirdList = aList # Concatenation returns a new list as well

thirdList[1] = ‘hi’

print thirdList

print aList

emptyList = [] # Start with an empty list

emptyList.append(1) # Grow the list

emptyList.append(2)

emptyList.append([6, 1, 1])

emptyList.append([3, 4, 5])

print emptyList

emptyList.extend([6, 4, 5]) # Extend the list

print str(emptyList) + ‘ extened’

emptyList.sort() # Sort the list

print str(emptyList) + ‘ sorted’

emptyList.reverse() # Reverse the list

print str(emptyList) + ‘ reversed’

emptyList.pop(2) # Shrink the list

print str(emptyList) + ‘ index 2 popped’

2.3.1 Bounds Checking

‘’’

You cannot reference items that do not exist

eg: emptyList[301] will return an error

‘’’

fifthList = [None] * 10

print fifthList

52

print ‘The length of the fifthList is: ‘,(len(fifthList))

2.3.2 Nested Lists

‘’’

Core data types in Python support arbitrary nesting

eg.

‘’’

pointList = [

 [‘origin’, 0, 0, 0],

 [‘point_1’, 2, 3, 5],

 [‘point_2’, 10, 40, -5],

]

print pointList

print pointList[1]

print pointList[2][3]

‘’’

When working with nested lists in Rhino, which is very common, it is important to keep

in mind the difference between Appending to the list and Extending the list.

‘’’

pointList.append([‘point_3’, 20, -11, 7]) # Append adds another list to the list

print pointList

pointList.extend([‘point_4’, 54, 93, -80]) # Extend merely adds the values to the end - ie.

flattens the list.

print pointList

pointList = pointList[:-4]

print pointList

2.3.3 An Iterable Object

‘’’

We can iterate through the values in a list

‘’’

for point in pointList:

 print ‘point = ‘ + str(point)

2.3.4 List Comprehensions

col1 = [row[1] for row in pointList] # Collect the items in the second position in each

list.

print col1

#-- 2.4 Tuples

‘’’

A tuple is a sequence, like a list, but one that is immutable and hence cannot be changed.

Coded in () rather than []

Because tuples cannot be changed, they provide data integrity where lists do not.

‘’’

aTuple = (1,2,3,4)

print ‘Tuple length is: ‘, len(aTuple)

print ‘Tuple = ‘, aTuple

#-- 2.5 Dictionaries

‘’’

Dictionaries are mappings that store objects, not by position, but by key.

Coded in curly brackets {}

Accessed by key, not offset

Unordered collection of arbitrary objects

Variable length, heterogenous, and abitrarily nestable

Of the category mutable mapping

‘’’

import rhinoscriptsyntax as rs

def SortedDictValues(adict):

 keys = adict.keys()

 keys.sort()

 return map(adict.get, keys)

An origin and three points

origin = [0,0,0]

point_1 = [10,0,0]

point_2 = [0,30,0]

point_3 = [0,0,20]

Distances between the origin and each point

length_1 = rs.Distance(origin, point_1)

length_2 = rs.Distance(origin, point_2)

length_3 = rs.Distance(origin, point_3)

Tuples of points signifying lines

line_1 = [[0,0,0], [10,0,0]]

line_2 = [[0,0,0], [0,30,0]]

line_3 = [[0,0,0], [0,0,20]]

A dictionary in which the ‘lines’ are associated with their lengths

dict = { length_1:line_1, length_2:line_2, length_3:line_3 }

print ‘Dictionary (keys:values) are: ‘, dict

Return sorted keys and values in three steps

54

keys = dict.keys() # Get the keys

print ‘Keys = ‘ + str(keys)

keys.sort() # Sort the keys

print ‘Sorted keys = ‘ + str(keys)

for k in keys: # Iterate through the sorted list of keys

 print k, ‘=>’, dict[k]

Return sorted keys and values in one step

for key in sorted(dict):

 print key, ‘=>’, dict[key]

Function returns the sorted values

sortedDict = SortedDictValues(dict)

print ‘Sorted Dictionary Values = ‘, sortedDict

#-- 2.6 Sets

‘’’

Sets are collections of objects and support boolean operations as well as more exotic set

operations.

‘’’

Two ways to make sets

x = set(‘abcde’)

y = set([‘b’, ‘c’, ‘l’, ‘m’, ‘n’])

print ‘x = ‘, x

print ‘y = ‘, y

Set membership

if ‘e’ in x:

 print ‘True’

else:

 print ‘False’

Union

print x | y

Difference

print x - y

Intersection

print x & y

#-- 2.7 Reference vs. Copies

‘’’

While working, you may be assigning multiple references to the same object. Be aware that

changing a mutable object in place can affect other refernces down-stream. If you don’t want

this to happen, you need to explicitly make copies of your objects.

Making copies

* Slice with empty limits L[:]

* Dictionary copy method D.copy()

* Some built-in functions list(L)

‘’’

a = [1, 2, 3]

b = [a, 4, 5, 6]

c = [a[:], 4, 5, 6]

print ‘a =>’, a

print ‘b =>’, b

print ‘c =>’, c

a[0] = 99

print ‘a =>’, a

print ‘b =>’, b

print ‘c =>’, c

#import rhinoscriptsyntax as rs

56

#===

3.0 SYNTAX

#===

#-- 3.1 Statements

‘’’

Printing print

Selecting if/elif/else

Sequence iterations for/else

General Looping while/else

Empty Placeholder pass

Loop jumps break, continue

Catching exceptions try/except/finally

Triggering exceptions raise

Module access import, from

Building functions def, return, yield

Building objects class

Namespaces global

Deleting references del

Runnign code strings exec

Debugging checks assert

Context managers with/as

‘’’

#----------------------------------- 3.2 Printing: redirecting the output stream

print ‘### 3.2 Printing ###’

log = open(‘log.txt’, ‘w’)

a = 1

b = 2

c = 3

print >> log, a, b, c # Saves all print statements to the log file

print a, b, c

print >> log, a+b

print >> log, a+b+c

log.close() # Close the log

print open(‘log.txt’).read() # Read its contents back in

#--- 3.3 If Test

print ‘### 3.3 If Test ###’

‘’’

if <test>:

 <statments1>

elif <test2>: # Optional

 <statements2>

else: # Optional

 <statments3>

‘’’

if a < b:

 print ‘a is less than b’

elif a > b:

 print ‘a is greater than b’

else:

 print ‘a equals b’

#--- 3.4 While Loops

print ‘### 3.4 While Loops ###’

‘’’

while <test>:

 <statements1>

else:

 <statements2>

while <test1>:

 <statements1>

 if <test2>: break # Exit loop and skip else

 if <test3>: continue # Go to top of loop

else:

 <statements2>

‘’’

a = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

while a: # While a is not empty

 print a

 a = a[1:] # Strip first character

a = 0

b = 10

while a < b:

 print a,

 a += 1

#--- 3.5 For Loops

print ‘’

print ‘### 3.5 For Loops ###’

‘’’

General python iterator

Iterable objects include strings, lists, tuples and...

An object is considered iterable if it is either a pysically stored sequence,

or an object that produces one result at a time in the context of an iteration tool

like a for-loop. ie. pysical and virtual sequences

Does not work with fractional steps!

for <target> in <object>: # Assign object items to target

58

 <statements> # Use target in repeated loop body

else:

 <statements>

for <target> in <object>: # Assign object items to target

 <statements>

 if <test1>: break # Exit loop

 if <test2>: continue # Go to top

else:

 <statements>

‘’’

pointList = [[0,0,0],[10,0,0],[0,20,0],[0,0,30]]

for point in pointList:

 print point

Counter loops

for x in range(10):

 print x,

print ‘’

for x in range(-10, 10):

 print x,

print ‘’

for x in range(-10, 10, 2):

 print x,

print ‘’

print ‘### Zip ###’

‘’’

points_1 = [[0,0,0],[10,0,0],[20,0,0],[30,0,0]]

points_2 = [[0,10,0],[10,10,0],[20,10,0],[30,10,0]]

points_3 = [[0,20,0],[10,20,0],[20,20,0],[30,20,0]]

points_4 = [[0,30,0],[10,30,0],[20,30,0],[30,30,0]]

pointList = [points_1, points_2, points_3, points_4]

print pointList

for points in pointList:

 rs.AddPolyline(points)

newPointList = zip(points_1, points_2, points_3, points_4)

print newPointList

for points in newPointList:

 lines = rs.AddPolyline(points)

‘’’

Using a fractional step in a For-Loop

def frange(start, stop, step):

 rc = []

 x = start

 while(x<=stop):

 rc.append(x)

 x+=step

 return rc

for i in frange(0,10, 0.5):

 print i,

60

#===

4.0 FUNCTIONS

#===

‘’’

‘def’ is an executable statement - it does not exist until Python reaches the code

and runs it. For this reason, your functions have to come before they are called.

‘global’ inside the function declares module level variables that are to be assigned.

arguements, return values, and variables are not declared.

‘’’

#--- 4.1 def Statement

‘’’

def <name> (arg1, arg2,... argN):

 “function_docstring”

 <statements>

def <name> (arg1, arg2,... argN):

 “function_docstring”

 <statements>

 return <value>

‘’’

#--- 4.2 Scope Rules

‘’’

Names defined inside a def can only be seen by code within that def.

Names inside the def do not clash with variable outside the def.

* The enclosing module is global scope

* Global scope spans a single file only

 Names are partitioned into modules and you must import the module to use

 any names it defines.

* Each call to a function creates a new local scope.

* Assigned names are local unless declared global

* Name Resolution: LEGB (Local, Enclosing defs, Global, Built-ins)

‘’’

#--- 4.3 Global variable

x = 10

def func_1():

 x = 20 # x is local here

 print x

func_1()

print x

def func_2():

 global x # define x as global

 x = 20 # change global variable

func_2()

print x

#--- 4.4 Passing Arguments

‘’’

* Arguments are passed by automatically assigning objects to local names.

* Assigning to argument names inside a function doesnt affect the caller.

* Changing a mutable object argument in a function may impact the caller.

‘’’

def multiply(x, y):

 z = x * y

 return z

a = 5

b = 3

answer = multiply(a, b)

print a, ‘*’, b, ‘=’, answer

#-- 4.5 Mutiple Output

‘’’

Python can return multiple values by returning a tuple and then assigning the results

back to the original argument names.

‘’’

def multi(x, y):

 mult = x * y

 add = x + y

 return mult, add

a = 5

b = 3

multiply = multi(a, b)

print a, ‘*’, b, ‘=’, multiply

#print a, ‘+’, b, ‘=’, addition

62

#===

5.0 MODULES

#===

‘’’

Each python file is a module (eg. module.py). Modules import other modules to

use the names they define.

import fetches a whole module

from fetches particular names from a module

reload reloads a modules code

Modules organize components into a system by serving as self-contained packages of

variables (ie. namespaces)

Imports happen only once.

If you change anything in a module that has already been imported, you need to ether

reload your module, or restart your session.

In the rhino python editor, go to Tools > Reset Script Engine

import aModule # imports the module as a whole

aModule.aFunction(argument) # must qualify to get the names

import aModule as m # imports the module and assigns a short name

m.aFunction(argument) # qualify with short name

from aModule import aFunction # copies out the variable

aFunction(argument) # no need to qualify names

from aModule import * # copies out all variables

aFunction(argument)

anotherFunction(arguemnt)

NB. Be careful with this last way of importing as it can corrupt namespaces.

‘’’

#--- 5.1 Module useful for Rhino

‘’’

<import rhinoscriptsyntax as rs>

Imports all of the RhinoPython functions. They are the same as their RhinoScript

equivalents.

<import lib.d2pLib as dp>

Import the D2P library functions.

<import math>

Imports math functionality.

import xlwt

Imports the excel writer library.

‘’’

#--- 5.2 Package Imports

‘’’

Imports can also name a directory path - known as a package import.

This turns the directory into a namespace.

For the directory:

C:\code\dir1\dir2\mod.py

import dir1.dir2.mod

NB. Each directory named in the import must contain a file named:

__init__.py

eg.

code\

 dir1\

 __init__.py

 dir2\

 __init__.py

 mod.py

The init file can contain Python code, or it can be empty.

Here is the current folder structure:

D2P\

 BLU_10_0000_Globals.py

 script_1.py # These all import d2pLib as dp

 script_2.py

 script_N.py

 lib\

 __init__.py

 d2pLib.py # This collects all the libraries into one namespace to make importing

easier

 python\

 __init__.py

 lib_1.py

 lib_2.py

 lib_N.py

‘’’

#-- 5.3 Private Data

‘’’

Python cannot strickly hide data and therefore is not really encapsulated.

However, there are two ways to hide data from imports:

1. _x Prefix the name with a single underscore

64

2. Put __all__ at the top level of a module. This will only allow those names

 listed in the all to be copied out. Eg:

 __all__ = [‘functionName_1’, ‘functionName_2’, ‘functionName_3’, ‘functionName_N’]

‘’’

#--- 5.4 __name__ and __main__

‘’’

Each module has a built-in attribute called __name__ that is set automatically

as follows:

If the file is being run as a top-level program:

 __name__ is set to the string __main__ when it starts

If the file is being imported:

 __name__ is set to the modules name

This allows you to use your code as a library module of tools or an executable program.

